Peter Košovan – Curriculum Vitae

Personal and contact information

Born	19. July 1981 in Námestovo, Slovakia	
Home	U Dubu 402, 252 31 Všenory, Czechia	1000
Work	Department of Physical and Macromolecular Chemistry	12
	Faculty of Science, Charles University	
	Hlavova 8, 128 43 Praha 2, Czechia	
Phone	+420-221-95-1029 (work) +420-608-003-990 (mobile)	- Care
E-mail	peter.kosovan@natur.cuni.cz	
Identifiers	ORCID 0000-0002-6708-3344, Researcher ID A-1945-2008	and a
Scientometric	H-index 21, 57 publications, 1044 citations (Web of Science)	XIIII XI

Employment and secondments

since Oct 2022	Associate professor (docent), Faculty of Science, Charles University, Prague
Jan 2013 $-$ Sep 2022	Assistant professor, Faculty of Science, Charles University, Prague
Jan 2010 – Jan 2013	Postdoc at Institute for Computational Physics, University of Stuttgart, DE,
	reference: Prof. C. Holm (holm@icp.uni-stuttgart.de)
Jan - Feb 2008	Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux,
	Université de Pau, FR; Secondment within the Marie Curie RTN Polyamphi,
	reference: Dr. O.V. Borisov (oleg.borisov@univ-pau.fr)
Aug-Dec 2007	Dept. of Physical Chemistry and Colloid Science, Wageningen University,
	NL; Secondment within the Marie Curie RTN Polyamphi, reference: Prof.
	F. Leermarkers (frans.leermakers@wur.nl)
Jan 2001–Dec 2003	Research assistant at Institute of Inorganic Chemistry, Czech Academy of
	Sciences, Rež, CZ; reference: Dr. Josef Buršík (bursik@iic.cas.cz)

Education

Ph.D. in Macromolecular chemistry, Faculty of Science, Charles University, Prague,
CZ; supervisor: Prof. K. Procházka (prochaz@natur.cuni.cz)
Master of Science (Mgr.) in Macromolecular chemistry, Faculty of Science, Charles
University, Prague, CZ; supervisor: Prof. K. Procházka
Bilingual English-Slovak Grammar School in Sučany, Slovakia

Awards and prizes

- Outstanding reviewer for Soft Matter in 2020 (recognition by editors of the journal)
- Award of the dean of Faculty of Science of the Charles University for young researchers (2016)
- Award of the Czech ministry of education, youth and sports for outstanding achievements in the field of Macromolecular Chemistry (awarded for Ph.D. thesis, 2010).

Research interests

- Computer simulations and mean field modeling of polymer systems
- Acid-base equilibria in macromolecular systems
- Swelling and partitioning of solutes in polymer solutions and gels
- Phase separation of charged polymers, colloids, coacervates and proteins

Research projects as principal investigator

Jan - Aug	Simulations of protein solutions in dialysis and dia-/ultra-filtration: The role of
2022	electrostatic interactions, pHand Donnan partitioning; Boehringer Ingelheim
2021 - 2023	Simulations of reaction equilibria in polymer systems - method development and ap-
	plications; Czech Science Foundation / DFG, project 21-31978J
2019 - 2021	Controlling encapsulation and release by charge regulation and multivalent interactions
	with supramolecular polymer carriers; Czech Science Foundation, project 19-10429S
2017 - 2019	Multiscale modeling of responsive polymer gels; Czech Science Foundation, project
	17-02411Y
2013 - 2015	Interactions and dynamics in polymeric nanostructures; Ministry of education, youth
	and sports of the Czech Republic, project LK21302
2006 - 2009	Molecular Dynamics Simulations of Annealed Polyelectrolytes; Grant Agency of the
	Czech Academy of Sciences of the Czech Republic, project KJB401110701
2006 - 2009	Persistence length of polyelectrolytes, Grant Agency of the Charles University, project
	No. 43-257-269

Supervised students (year of defense)

PhD	R. Lunkad (2023), S. Pineda (expected: 2025), I. Padhee (expected: 2027),
Master	J. Kubečka (2017), R. Staňo (2020), M. Nejedlá (expected: 2024)
Bachelor	J. Kubečka (2015), R. Staňo (2018), M. Nejedlá (2022), V. Keprta, J. Krieger (expected 2024)

Teaching experience (selection)

since 2022	Physical Chemistry I (Chemical Thermodynamics), Lecture + Tutorial, Charles Uni-
	versity
since 2019	Physical Chemistry for International Students, Lecture, Charles University
since 2017	Physical Chemistry of Macromolecules, Lecture, Charles University
since 2013	Statistical Thermodynamics and Molecular Simulations, Lecture + Tutorial, Charles
	University
2010 - 2013	Simulation methods in Physics I and II, Tutorial, University of Stuttgart
2006,2009	Physical Chemistry II (Chemical kinetics & Electrochemistry), Tutorial, Charles Univ.

Language skills

English	advanced (CEFR level C1, CAE exam, score A)
German	advanced $(B2/C1 \text{ self-assessment})$
$\operatorname{Russian}$	lower-intermediate (B1/B2 self-assessment)
French	beginner (B1 self-assesment)
Polish	advanced (passive C1, active B2 because of lacking practice, self-assessment)
Other	Slovak (mother tongue), Czech (2nd mother tongue)

Computer skills

python, C, bash, TCL, T_EX , LAT_EX , Linux, (Ubuntu, OpenSuse, basic system administration), Windows, standard office tools

Hobbies and interests

Rock climbing, mountaineering, skiing, cycling; learning languages and any kind of interesting science.

- Roman Staňo, Jéré J. Van Lente, Saskia Lindhoud, and Peter Košovan. Sequestration of Small Ions and Weak Acids and Bases by a Polyelectrolyte Complex Studied by Simulation and Experiment. *Macromolecules*, 57(3):1383–1398, January 2024.
- [2] David Beyer, Peter Košovan, and Christian Holm. Explaining Giant Apparent p K a Shifts in Weak Polyelectrolyte Brushes. *Physical Review Letters*, 131(16):168101, October 2023.
- [3] Raju Lunkad, Fernando L. Barroso da Silva, and Peter Košovan. Both charge-regulation and charge-patch distribution can drive adsorption on the wrong side of the isoelectric point. *Journal* of the American Chemical Society, 144(4):1813-1825, 2022.
- [4] Raju Lunkad, Philip Biehl, Anastasiia Murmiliuk, Pablo M. Blanco, Peter Mons, Miroslav Štěpánek, Felix H. Schacher, and Peter Košovan. Simulations and Potentiometric Titrations Enable Reliable Determination of Effective pK_a Values of Various Polyzwitterions. *Macromolecules*, 55(17):7775–7784, September 2022.
- [5] Jonas Landsgesell, David Beyer, Pascal Hebbeker, Peter Košovan, and Christian Holm. The pH-Dependent Swelling of Weak Polyelectrolyte Hydrogels Modeled at Different Levels of Resolution. *Macromolecules*, 55(8):3176-3188, April 2022.
- [6] Roman Staňo, Peter Košovan, Andrea Tagliabue, and Christian Holm. Electrostatically Cross-Linked Reversible Gels—Effects of pH and Ionic Strength. Macromolecules, 54(10):4769–4781, 2021.
- [7] Raju Lunkad, Anastasiia Murmiliuk, Pascal Hebbeker, Milan Boublík, Zdeněk Tošner, Miroslav Štěpánek, and Peter Košovan. Quantitative prediction of charge regulation in oligopeptides. Molecular Systems Design & Engineering, 6(2):122–131, 2021.
- [8] Jonas Landsgesell, Pascal Hebbeker, Oleg Rud, Raju Lunkad, Peter Košovan, and Christian Holm. Grand-reaction method for simulations of ionization equilibria coupled to ion partitioning. *Macromolecules*, 53(8):3007–3020, Apr 2020.
- [9] Jonas Landsgesell, Lucie Nová, Oleg Rud, Filip Uhlík, David Sean, Pascal Hebbeker, Christian Holm, and Peter Košovan. Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. Soft Matter, 15(6):1155–1185, 2019.
- [10] Lucie Nová, Filip Uhlík, and Peter Košovan. Local pH and effective pK_A of weak polyelectrolytes insights from computer simulations. *Phys. Chem. Chem. Phys.*, 19:14376–14387, 2017.
- [11] Peter Košovan, Tobias Richter, and Christian Holm. Modelling of polyelectrolyte gels in equilibrium with salt solutions. *Macromolecules*, 48:7698–7708, 2015.